
Design of an Educational use Virtual Machine

Tuisku Polvinen

December 4, 2019

Contents

1 Course virtualization 2
1.1 Introduction . 2
1.2 Virtual machines as a solution . 2

2 Plan 4
2.1 Prerequisites . 4
2.2 Designing the initial VM . 5
2.3 Automation of installation . 8
2.4 Testing . 10
2.5 Distribution . 10

3 Implementation 10
3.1 Preparations . 10
3.2 Building the initial VM image . 11
3.3 Exporting and distributing the VM . 13

A Startup Scripts 15
A.1 startupScript.sh . 15
A.2 debianlanguage.sh . 16

B Debian Preseed 17

C Ansible playbooks 18
C.1 prepare-vm.yaml . 18
C.2 playbook-install-git.yaml . 19
C.3 playbook-clean-system.yaml . 19

1

1 Course virtualization

This document describes how to design and build pre-installed virtual machines that run on
student laptops and contain an OS with all needed software, pre-installed and pre-configured.

1.1 Introduction

On most courses, each student is expected to bring their own laptop, on which course exer-
cises are performed. Student laptops contain a variety of operating systems, environments
and tools, which have to be configured carefully to ensure compability to avoid problems
and errors. The level of expertise in installing and configuring these tools varies with each
student, and on some courses there might be a danger of falling behind if a less experienced
student does not receive extensive help from their peers or the teacher.

To solve these problems, The Department of Future Technologies of the University of
Turku launched a project which aims to bring a solution that:

• reduces the time used for software configuration on courses so that the time can be
used for actoual course purposes

• lessens the burden of teachers by reducing the amount of assistance students need for
using course tools

• ensures that every student has access to a homogenous environment compatible with
other students’.

1.2 Virtual machines as a solution

The goal of this project is to solve the abovementioned problems by virtualization. A
decided amount of different virtual machines (VM) are built for use in different types of
courses and distributed to students, pre-configured. The VMs each run a Linux operating
system and come with all needed software pre-installed. Installation of a hypervisor is
considerably simpler than installing and configuring large sets of development tools, and to
further simplify the process, this project aims to provide students with clear documentation
on how to install and use the VMs. This approach is assumed to have several positive effects:

• The teacher is fully aware of the type of environment that students have at their
disposal, making it easier to provide technical support.

• The teacher can customize the virtual machine before distributing it to the students, so
even fast schedule changes to the machines are possible without bureaucratic processes,
if needed

• Unlike a remote environment, the VM operates on the student’s own laptop, available
whether or not connected to the internet.

• A student can have several different VMs simultaneously at their own, each serving
the needs of a different course.

• Installing a virtual machine monitor is simple, and advising students in it’s use takes
less time from the teacher than all the installation and configuration help that would
be needed without a virtual machine.

• The same process and VM model can be used across several different courses, unifying
some of the technical support needs of students.

In addition, the usage of virtual machines provides students hands-on experience with
virtualization and a low-threshold opportunity to familiarize with unix-based systems.

2

1.2.1 A brief introduction to virtualization

Virtualization is a technology that enables simulating a layer of virtual hardware, a virtual
machine, which can be executed in an isolated environment on the host computer. One
or more virtual machines can be run on the same host computer, each with their own
operating systems and applications. There are two main types of virtualization: bare metal
virtualization (type 1), where a hypervisor runs directly on the system’s hardware, and
hosted virtualization (type 2) where the hypervisor runs within a native operating system
as an application (Figure 1) [1, 2].

Host hardware

Host operating system

Hypervisor

Guest operating system

ApplicationApplication

ApplicationApplication

Figure 1: Architecture example of type 2 hypervisor

A hypervisor, or virtual machine monitor, is the software that creates, runs and controls
the virtual machines. While a type 1 hypervisor interfaces directly with the host hardware,
a type 2 hypervisor interfaces with the host operating system to access hardware resources
and distributes them to the guest systems.

The main benefits of virtualization are better control of the hardware resources which
can be partitioned and distributed effectively to multiple virtual machines on the same
hardware, isolation which has security benefits and encapsulation meaning that the virtual
machine state an be saved as a file that can be moved and copied as easily as any file [3].

3

2 Plan

During the beginning of our project, we laid out our goals and a general timeline, and did re-
search on similar projects done in other universities. There were many similar virtualization
projects with more or less differences, many of which were intended for computer security
or networking courses [3, 4, 5], some for operating system courses [6], some for providing
research tools for a specific field [7, 8, 9, 10] and some, sparking our special interest, for
computer science studies in general [11, 12, 13]. All of the publications provided valuable
insight to what approaches others had chosen.

2.1 Prerequisites

We began designing our approach by mapping out which courses would be included, what
requirements they had and how they would affect our design choices. We expected there to
be a lot of variation in student laptop performance. For the virtual machines to work well
and to not take a lot of disc space on student laptops, we wanted them to be as small and
lightweight as possible. Since including all of the software needed on any of the courses in
one virtual machine would have led to our VM image to be unnecessarily large, we wanted
to design a set of VMs with a uniform base and a varying selection of specific tools. The
requirements for each course were laid out in a table and studied to find similarities between
courses, so that we could deduce which courses would be able to use a similar VM setup.
Our build design is presented in figure 2.

Package T
K

O
20

38

T
K

O
2
00

5

D
T

E
K

10
48

D
T

E
K

10
49

D
T

E
K

10
66

T
K

O
89

71

D
T

E
K

81
01

D
T

E
K

20
40

D
T

E
K

20
41

VM1 VM2 VM3
Runtime libs
Java JRE • • • • • • • × × • × ×
Java JDK • • • • • • • × × • × ×
Java FX ◦ ◦ • • ◦ · · × × • × ×
IDEs
IntelliJ IDEA · − − . × ×
Eclipse • • • • • • · − − • × ×
VS Code − − · · · . • × • •
Atom − − · · · . − × × .
...

obligatory useful but not required neutral, unrelated
• ◦ ·

adverse, takes up space conflicting alternate
− × .

Table 1: An excerpt of the course requirement table.

2.1.1 Selecting a hypervisor

A hypervisor is an essential part of creating and running virtual machines. There is a variety
of different hypervisors available, and in this project, VMware Workstation [14] and Oracle
VirtualBox [15] were both used in the initial design and production process.

4

To simplify matters and to keep our implementations congruent, we wanted to decide on
one hypervisor to use. It would have been possible to provide kernel support for multiple
different hypervisors simultaneously, so that the VMs would function optimally regardless of
what hypervisor it was run with, but because we wanted to keep the project simple enough
to manage in the future, we dropped the idea.

Deciding between VirtualBox and VMware virtualization was not an easy task, as both
of them provided all of the functionality we needed, had their own drawbacks and advantages
but neither was a clear better option. Some of the pros and cons we considered are presented
in table 2.

Creating and managing the virtual machines with VMware software was considerably
simpler, since the tools needed for VMware compability are already included in the Debian
kernel and no additional installations on the guest OS are needed. Wmware Player can be
used in Windows and Linux for free, but for a MacOS user VMware offers Fusion, for which
a license is needed.

VirtualBox is free and open source, eliminating any licensing issues. During our research
for similar projects we found out that some had had problems with VirtualBox, and many
who had initially chosen VirtualBox had later switched to other solutions, most notably
VMware [12, 13]. This led us to investigate further. We ran some tests, mostly regarding
hypervisor behavior when closing laptop lids, entering sleep mode or turning off the power
while the hypervisor is running but found no consistent problematic behavior. We also had
a small group of UX test subjects, who didn’t show any mentionable preferences except for
a couple who had a slight preference for WMware Player’s simpler GUI. Other comparisons
pointed to the conclusion that the differences between VirtualBox and WMware are not
significant performance-wise [16].

pros cons
VMware stable

backwards compatible
simple GUI

different client for MacOS
needs license

VirtualBox free and open source
multi-platform

more complex setup
stability issues

Table 2: Caption

2.2 Designing the initial VM

As the operating system for our virtual machines, Linux was chosen because it is open
source software and allows for more customization than other major operating systems. To
facilitate the distribution of the VMs and to reduce the amount of disc space they take up
on student machines, we wanted the OS to be relatively small, what could be most easily
achieved with a suitable Linux distribution.

To choose a distribution for our project, we reviewed the list for VirtualBox’s supported
Linux distributions and laid out our own criteria to select from among them. We wanted
to find a distribution that would be small, lightweight, easily installed and maintained,
user-friendly and open-source.

We reviewed some distributions that were designed to be particulary small, like Alpine
Linux1 and Arch Linux2, but he initial sizes of distributions proved to be somewhat in-
significant. The smaller distributions lacked more of the software packages that our chosen

1https://alpinelinux.org/
2https://www.archlinux.org/

5

Distribution Pros Cons
Alpine Linux can be really lightweight non-standard libc
Arch Linux can be really lightweight challenging maintenance
CentOS stable outdated packages
Debian stable, long-term support outdated packages
Fedora developer-friendly large footprint
Gentoo can be really lightweight challenging maintenance
OpenSUSE solid, stable rapid update cycle
Ubuntu/Xubuntu well-documented, beginner-friendly large footprint

Table 3: The Linux distributions considered for the guest operating system, along with their
characteristics, pros and cons. During our project, a new version of Debian was released,
resolving the problem with outdated packages.

applications depended on, and they had to be installed anyway, so that the smaller a dis-
tribution was, the more it grew with every application installed.

At first we settled for Ubuntu, mostly because it is designed to be user-friendly even for
those with no previous experience with Linux, and because it is also well-documented and
supported [17]. Debian, on which Ubuntu is based, was initially discarded because it didn’t
have support for Java 11 nor Python 3, but as a new version was released during the project
these problems were fixed and Debian 10 was chosen as the operating system for our VMs.

2.2.1 Minimizing the VM

To further reduce the sizes of the virtual machines, irrelevant software packages which were
still present in the minimal installation were mapped for removal. Some packages were
replaced with a more lightweight alternative. A notable example of this is the default
desktop environment, GNOME3, which was superseded by the smaller Xfce4. Size and
memory footprint comparison of different desktop environments are shown in table 4 [18,
19].

Desktop environment Installed size Required RAM Required CPU
GNOME 2487 MB 768 MB 400 MHz
Unity 1 GB 1 GHz
Cinnamon 2212 MB 512 MB 1 GHz
MATE 1631 MB 512 MB 800 MHz
KDE 2198 MB 615 MB 1 GHz
Xfce 1529 MB 192 MB 300 MHz

Table 4: ...

2.2.2 Desktop modifications

To further accommodate the virtual machines, we decided to make some changes to the
default desktop layout and to include specific desktop shortcuts for some applications, even
if they could also be found from the application menu. Majority of the student group which
our virtual machines are targeted to are Windows users, and to make the environment to
feel more familiar to them, we removed the Xfce panel and moved the taskbar from its
default position to the bottom of the screen.

3https://www.gnome.org/
4https://www.xfce.org/

6

Student hardware

Host OS (Windows/Linux/MacOS)

Hypervisor

Debian 10

Common software
Java

development
software

C++
development

software

Web&mobile
development

software

VM-specific applications

Figure 2: VM Architecture

2.2.3 Startup scripts

In addition to the other modifications, we wanted a script that runs when a student logs in
to their virtual machine for the first time. We had some tasks planned for the script:

• Asking for localization settings so that they would be set according to the location
and preferences of the student right away

• creating an SSH key for the student to use with GitLab

• setting the student’s name and email as their user information in the VM’s Git con-
figuration file.

We designed two scripts, both of which run when the student uses the VM for the first
time. The first script has three tasks. At first it opens a dialog where the student is
prompted to enter their name, email and a password, which is used for the second task,
where the script creates an SSH key that uses the given password as a passphrase and edits
the Git configuration file. The SSH key is created in the student’s home .shh folder so they
can just paste the public key to GitLab/GitHub. Finally, the script opens the system dialogs
for time zone and keyboard layout settings. The second scripts opens a dialog where the
student can choose the VM language from our three options, Finnish, English and Swedish.

2.2.4 Seafile integration

The University of Turku uses Seafile5 for file sharing and cloud storage. We wanted to
provide students with easy acces to their Seafile libraries on the VMs and decided to include
a Seafile applet with the other software. Initially, we pictured having a Seafile Drive client
which maps the student’s storage space on the university Seafile server as a virtual drive on
the VM, automatically linking to the student’s account with the login script information,
but this proved to be an unstable solution.

5https://www.seafile.com/

7

2.2.5 Git guide

Since the students are supposed to track and store their assignment progress using dis-
tributed version control, more specifically Git, we produced a compact user guide for Git
in PDF to use on the courses included in the virtualization project. To ensure that the
file would be easily accessible for anyone using any of the VMs, we decided to distribute it
inside the VM, located on the desktop.

2.2.6 Preconfigured bookmarks

To make it easier for students to find course material and other related information quickly,
we decided to preset bookmarks in the browsers that were pre-installed on the VMs. Our
browser of choice was Google Chrome, which stores bookmarks as a json file but exports
them as a html file, which cannot be directly inserted to the virtual machine’s Chrome
folder. The json file could not be edited manually because it is protected by a checksum
for errors. We solved this by simply copying the json bookmark file of a browser where the
planned bookmarks were set and inserting it to the VM as it was.

2.3 Automation of installation

While creating several similar virtual machines, or replicating the creation of one VM while
performing subsequental testing on the created machine, it is desirable to replicate the cre-
ation as exactly as possible. Manual installation increases the risk of mistakes and takes a
lot of time [20]. To automate the install and configuration processes, we used two methods;
a preseed file to install the operating system, and Ansible playbooks to automate the instal-
lation of software packages in the OS as well as to insert the configuration files and scripts
mentioned above.

2.3.1 Debian preseed

A preseed file is used to automate the OS installation. All of the options presented during
installation can be pre-answered in the preseed file, so that the installation is performed
with controlled, predefined settings. Debian offers a preseed file example6 which was used
as the base for this project’s preseed.

The preseed file example includes clear documentation in itself. In the file, desired lines
are uncommented or added. In this project, we defined the VM’s locales (language, country,
keyboard, time zone), hostname, mirror settings, account settings (username, password) etc.
using the preseed file so that every new VM created was identical without a need to enter
all these settings manually. We also decided to modify sudo settings through the preseed
so that the image would be better prepared for further modification. The effectual lines of
our preseed file are presented in appendix B.

The preseed file can be fed to the installer in different ways. In this project, the preseed
file was hosted on a web server and fed via the virtual machine’s text boot prompt after
inserting the Debian installation disc. The text boot prompt can be accessed by pressing
ESC key while viewing the boot menu.

At the text boot prompt, the preseed is fed with the command auto which takes the
preseed url as a parameter7.

6https://www.debian.org/releases/buster/example-preseed.txt
7https://www.debian.org/releases/buster/armhf/apbs02.en.html#preseed-auto

8

B
A

C

Java VM
playbook

A

C

C++ VM
playbook

A
B
C

Web+Mobile VM
playbook

Clean system

Install Git and other common tools

Prepare VM

Install Java

Install Java development tools

Install C++ tools

Install VScode

Install VScode plugins

Install Web+Mob tools

B

Figure 3: Each management playbook (left) consists of a set of imported playbooks (right).
The import sequence for each management playbook is the same. First the preparation and
common tool playbooks are imported (A), then the playbooks with specific tools (B) and
finally the common cleanup playbook (C).

2.3.2 Ansible playbooks

After the OS installation, the virtual machine is prepared for software installations, before
which the size of the virtual machine image can be somewhat reduced by removing un-
necessary software packages. There are several ways to automate both the clean-up and
installation processes, so that every created virtal machine is identical.

In this project, the majority of software installation and uninstallation was made using
Ansible [21], which is an open-source software provisioning, configuration management, and
application-deployment tool8.

Ansible playbooks are used to modify the software installed on the virtual machine -
to uninstall unnecessarities and to install desired software, like a graphical user interface, a
web browser and development tools.

Since in this project we had three VM designs which had some common and some
exclusive features, a modular playbook approach was used. The Ansible tasks were divided
among smaller playbooks which were imported in management playbooks, which were each
designed to build one of the three different VM designs (Figure 3). This way, it can be
ensured that all of the common tools were installed the same way on each different machine,
while the editing process is also streamlined so that an edit in one playbook takes effect in
every management playbook in which it is imported.

In addition to package installations, our Ansible playbooks inserted configuration files
mentioned in section 2.2.2 for some of the software. For example, the Prepare VM playbook
(Appendix C.1), which installs a login manager, desktop environment and other basic ap-
pliances, also creates directories for their configuration files on the VM and copies the files
to their respective folders from given locations on the host machine.

8https://www.ansible.com/overview/how-ansible-works

9

Finally, in the Clean system playbook (Appendix C.3), the bash history and other files
no longer needed are removed and the startup scripts (Section 2.2.3) are inserted.

2.4 Testing

To ensure that the virtual machines would perform their intended purpose, we installed
them on different host computers and did a variety of course assignments. No particular
problems arose.

Elaborate on testing. Also add student-found problems from oom?

2.5 Distribution

how will we distribute the machines? compare different distribution methods in a brief
way and then explain the chosen one

At the moment the VMs are distributed through the ftdev.utu.fi site

3 Implementation

This section contains a general description of the process assuming the tools are somewhat
familiar to the reader. Some examples of the scripts, playbooks etc. used in our project
are presented in the appendix as examples of how our solutions were implemented, but it
is assumed that thre reader either knows how to create their own files or hass acces to our
project repository where the files are stored, accompanied with additional documentation.

3.1 Preparations

Before building the actual virtual machine, the tools used in the process should be chosen
and aquired, as well as scripts designed and written. Some tasks can be carried out with
different methods, like a desktop environment can be installed through preseeding or by
Ansible or some other install management tools. While designing the tools, it is advisable
to form a clear picture of what will be done by which method before proceeding further.

3.1.1 Installing the hypervisor

As stated before, there is a variety of hypervisors available, but this guide provides instruc-
tions assuming Oracle VirtualBox is used. The installer files and instructions can be found
from the VirtualBox site9. The installation itself is a straightforward process, but to enable
USB support, among other things, there is an extension pack which needs further installing.
It can be found in the download section on the VirtualBox site.

3.1.2 Aquiring the OS image

In this project, Debian 10 was chosen as the OS for all machines. The installation image
can be downloaded from the Debian official site10.

9https://www.virtualbox.org/
10https://www.debian.org

10

3.1.3 Preparing the preseed file

A new preseed file can be obtained from the Debian official site11. The file should be saved
as .cfg and it can then be used as-is, or modified to suit varying needs. In this project,
we used the preseed file for several configurements. In addition to settings presented in the
initial example file, commands were added to set sudo rights and network settings, among
other things. Our additions are presented in appendix B.

The preseed file can be used in three different ways, which are explained in the Debian
preseeding guide12. In this project, we opted for a netboot method, hosting the file on a
http server. Prepare the preseed file for use in your preferred method.

3.1.4 Writing the startup scripts

Our scripts are presented in appendix A.1 and A.2. They can be used as is or modified
to suit other needs. They should be saved as .yaml files in a folder where they can be
accessed by Ansible later. Our system cleanup playbook copies the scripts from host direc-
tory specified as ../../scripts/, relative to where the playbooks are run, to VM directory
/etc/profile.d/ as seen in appendix C.3

3.1.5 Creating configuration, bookmark and other insertable files

Configuration files can be created in a VM and copied from there or written manually. They
should be saved on the host computer so they can be accessed by Ansible later. Also note
where the locations where the configuration files should be inserted in the VM. An example
of our insertation of our Xfce configuration files can be seen in appendix C.1.

Bookmark procedure: writing a bookmark file as html and importing to chrome or
bookmarking in chrome, exporting the json.

3.1.6 Creating Ansible playbooks

This guide doesn’t go in-depth about how to create and build Ansible playbooks. Docu-
mentation and tutorials can be found from the Ansible site13. Three playbooks that install
the basic software packages used by VMs in our project and insert their configurations are
presented in appendix C.

3.2 Building the initial VM image

3.2.1 creating a virtual machine

Using the selected hypervisor, a new virtual machine is created. The setting used in this
project can be seen in table 5.

If VirtualBox is used, additional network adapter settings should be configured for the
VM before installing the operation system. These settings can be found the virtual machine’s
preference menu. In the Network section, Adapter 2 settins should be set as follows:

2� Enable Network adapter

Attached to: Host -only Adapter

Name: VirtualBox Host -Only Ethernet Adapter #2

11https://www.debian.org/releases/buster/example-preseed.txt
12https://www.debian.org/releases/buster/armhf/apb.en.html
13https://www.ansible.com/overview/how-ansible-works

11

Type Linux
Version Debian (64-bit)
Processors 2
Cores per processor 1
Memory size 2048 MB
Network type NAT
Virtual disc size 10 GB
Dynamically allocated yes

Table 5: Virtual machine settings

3.2.2 Installing the operating system (preseed)

After creating a suitable virtual machine, the operating system (OS) is installed on it using
the OS image aquired in section 3.1.2 and a preseed file. The image is inserted into the virtual
machine which is then booted. To use a Debian preseed file for automated installation, the
text boot prompt should be opened by pressing the ESC key while viewing the Debian boot
menu. The preseed and its creation are explained in section 3.1.3. Using a http-hosted
preseeding method, the preseed file is fed as follows14:

auto url=http://192.168.1.2/path/to/mypreseed.file

The url should be replaced with the actual url of the preseed file used.

3.2.3 VM modifications needed for VirtualBox

While using VirtualBox, certain drivers are needed to be installed separately inside the vir-
tual machine from a guest additions disc. Through the virtual machine settings in Virtual-
Box, an optical drive is added and VBoxGuestadditions.iso inserted. Further instructions
for installing the additions are provided on the VirtualBox site15.

To enable Ansible to connect to the virtual machine, the network settings need to be
modified. Inside the virtual machine, /etc/netplan/*.yaml should be edited so that it is
as follows:

network:

version: 2

renderer: networkd

ethernets:

enp0s3:

dhcp4: yes

enp0s8:

dhcp4: yes

While logged in to the VM, the IP address needed in the next section can be checked
from the VM’s terminal with networctl status.

3.2.4 Running Ansible playbooks

Before running the playbooks, Ansible needs contact information for the virtual machine.
On the host machine, a file is created in directory /etc/ansible/ and named hosts, and

14https://www.debian.org/releases/jessie/mips/apbs02.html.en#preseed-auto
15https://www.virtualbox.org/manual/ch04.html#additions-linux

12

the address of the VM is written in the file. In this project, we used Avahi16 and Bonjour17,
allowing us to use .local hostnames with Ansible, but an IP address works just as well. Our
hosts file contained the VMs ID and hostname:

[javavm]

utuvm.local

Ansible connects to the virtual machine via SSH. To permit the host to connect to the VM,
the host’s SSH key is copied to the VM:

ssh-copy-id utu@utuvm.local

Alternatively, using an IP addess:

ssh-copy-id utu@xxx.xxx.xxx.xxx

When all preparations are done and playbooks ready for use, they can be run:

ansible-playbook -u utu playbook-install-xxx.yaml

3.3 Exporting and distributing the VM

Finally, the virtual machine is exported as an OVA file and distributed to the students by a
suitable method.

References

[1] Gerald J Popek and Robert P Goldberg. “Formal requirements for virtualizable third gener-
ation architectures”. In: Communications of the ACM 17.7 (1974), pp. 412–421.

[2] Mendel Rosenblum and Tal Garfinkel. “Virtual machine monitors: Current technology and
future trends”. In: Computer 38.5 (2005), pp. 39–47.

[3] Dale L Lunsford. “Virtualization Technologies in Information Systems Education”. English.
In: Journal of Information Systems Education 20.3 (Oct. 2009), p. 339. url: https://search.
proquest.com/docview/200134934.

[4] Peng Li. “Integrating Virtualization Technology into Remote Lab: A Three- Year Experi-
ence”. In: American Society for Engineering Education. American Society for Engineering
Education. 2009.

[5] Networking Courses. A Virtual Lab Model to Integrate Computer. 2017.

[6] Jason Nieh and Chris Vaill. “Experiences teaching operating systems using virtual platforms
and Linux”. In: ACM SIGOPS Operating Systems Review 40.2 (2006), pp. 100–104.

[7] Tobias Kind et al. “Software platform virtualization in chemistry research and university
teaching”. In: Journal of cheminformatics 1.1 (2009), p. 18.

[8] Samuel V Angiuoli et al. “CloVR: a virtual machine for automated and portable sequence
analysis from the desktop using cloud computing”. In: BMC bioinformatics 12.1 (2011),
p. 356.

[9] Florian Metze, Eric Fosler-Lussier, and Rebecca Bates. “The Speech Recognition Virtual
Kitchen”. In: (Aug. 2013). doi: 10.1184/R1/6473750.v1. url: https://kilthub.cmu.edu/
articles/The_Speech_Recognition_Virtual_Kitchen/6473750.

[10] Martin Dahlö et al. “Biolmg. org: A Catalog of Virtual Machine Images for the Life Sciences”.
In: Bioinformatics and Biology insights 9 (2015), BBI–S28636.

16https://www.avahi.org/
17https://support.apple.com/bonjour

13

[11] Mohammed Ketel. “A virtualized environment for teaching IT/CS laboratories”. In: Proceed-
ings of the 48th Annual Southeast Regional Conference. ACM. 2010, p. 92.

[12] David J Malan. “From cluster to cloud to appliance”. In: Proceedings of the 18th ACM
conference on Innovation and technology in computer science education. ACM. 2013, pp. 88–
92.

[13] Andy Sayler et al. “Supporting CS education via virtualization and packages”. English. In:
SIGCSE ’14. ACM, Mar. 2014, pp. 313–318. doi: 10.1145/2538862.2538928. url: http:
//dl.acm.org/citation.cfm?id=2538928.

[14] VMware – Official Site. https://www.vmware.com/.

[15] Oracle VM VirtualBox. https://www.virtualbox.org/.

[16] J Horalek and T Svoboda. “Analysis of Virtualization Tools for Education Purposes”. In:
Journal of Telecommunication, Electronic and Computer Engineering (JTEC) 10.1-8 (2018),
pp. 89–94.

[17] Budoor Al Housani, Bakhita Mutrib, and Hend Jaradi. “The Linux review-Ubuntu desktop
edition-version 8.10”. In: 2009 International Conference on the Current Trends in Information
Technology (CTIT). IEEE. 2009, pp. 1–6.

[18] Charles Craig. Desktop Environments for Linux. https://renewablepcs.wordpress.com/
about-linux/kde-gnome-or-xfce/. Accessed: 2019-08-01.

[19] D.2. Disk Space Needed for Tasks. https://www.debian.org/releases/jessie/amd64/

apds02.html.en. Accessed: 2019-08-01.

[20] Changhua Sun et al. “Simplifying Service Deployment with Virtual Appliances”. English. In:
vol. 2. IEEE, July 2008, pp. 265–272. doi: 10.1109/SCC.2008.53. url: https://ieeexplore.
ieee.org/document/4578533.

[21] Ansible is Simple IT Automation. https://www.ansible.com/.

Todo list

o Elaborate on testing. Also add student-found problems from oom? 10
o how will we distribute the machines? compare different distribution methods in a

brief way and then explain the chosen one . 10
o At the moment the VMs are distributed through the ftdev.utu.fi site 10

14

A Startup Scripts

A.1 startupScript.sh

#!/bin/bash

FILE=/home/utu/.firstrun.flag

SSHKEYFILE=/home/utu/.ssh/id_rsa

if [! -e "$FILE"]; then

echo Running settings script...

ENTRY=‘zenity --forms --title="Information gathering" \

--text="Information needed for Your new Ssh-key and git-configuration" \

--add-entry="Your name" --add-entry="Your email address" --add-password="Password" ‘

NAME=‘echo $ENTRY | cut -d’|’ -f1‘

EMAIL=‘echo $ENTRY | cut -d’|’ -f2‘

PWD=‘echo $ENTRY | cut -d’|’ -f3‘

if ! [-z ’$ENTRY’]; then

case $? in

0)

#Jos SSH-avainta ei ole, se tehdään

[! -e "$SSHKEYFILE"] && ssh-keygen -P $PWD -C $EMAIL -f ~/.ssh/id_rsa -t rsa -b 4096

#modify .gitconfig

sed -i "s/^name =.*$/name = $NAME/g" /home/utu/.gitconfig

sed -i "s/^email =.*$/email = $EMAIL/g" /home/utu/.gitconfig

;;

1)

echo "Stop login.";;

-1)

echo "An unexpected error has occurred.";;

esac

fi

touch $FILE

fi

if [! -f /home/utu/.keyboard.flag]

then

xfce4-keyboard-settings

touch /home/utu/.keyboard.flag

fi

if [! -f /home/utu/.tz.flag]

then

xfce4-terminal -e ’sudo dpkg-reconfigure tzdata’

touch /home/utu/.tz.flag

fi

15

A.2 debianlanguage.sh

#!/bin/bash

if [! -f /home/utu/.language.flag]

then

yad --button="English":1 --button="Suomi":2 \

--button="Svenska":3 --center --undecorated --text="Select Language"

case $? in

1)

touch /home/utu/.language.flag

if [[! "$LANG" = "en_US.UTF-8"]] ; then

sudo localectl set-locale LANG=en_US.UTF-8

sudo reboot

fi ;;#&& exit 0

2)

touch /home/utu/.language.flag

if [[! "$LANG" = "fi_FI.UTF-8"]] ; then

sudo localectl set-locale LANG=fi_FI.UTF-8

sudo reboot

fi ;; #&& exit 0

3)

touch /home/utu/.language.flag

if [[! "$LANG" = "sv_FI.UTF-8"]] ; then

sudo localectl set-locale LANG=sv_FI.UTF-8

sudo reboot

fi ;; #&& exit 0

esac

fi

16

B Debian Preseed
A condensed version of the Debian preseed file, with all but relevant lines removed.

d-i debian-installer/locale string en_US
d-i debian-installer/language string en
d-i debian-installer/country string FI
d-i debian-installer/locale string en_US.UTF-8
d-i localechooser/supported-locales multiselect fi_FI.UTF-8, sv_FI.UTF-8
d-i keyboard-configuration/xkb-keymap select fi
d-i netcfg/choose_interface select auto
d-i netcfg/get_hostname string utuVM
d-i netcfg/get_domain string unassigned-domain
d-i netcfg/hostname string utuVM
d-i netcfg/wireless_wep string
d-i netcfg/dhcp_hostname string utuVM
d-i mirror/country string finland
d-i mirror/http/hostname string www.nic.funet.fi
d-i mirror/http/directory string /debian
d-i mirror/http/proxy string
d-i mirror/suite string stable
d-i mirror/udeb/suite string stable
d-i passwd/root-login boolean false
d-i passwd/user-fullname string Utu Student
d-i passwd/username string utu
d-i passwd/user-password password ttlaitos
d-i passwd/user-password-again password ttlaitos
d-i clock-setup/utc boolean true
d-i time/zone string Europe/Helsinki
d-i clock-setup/ntp boolean true
d-i partman-auto/method string regular
d-i partman-lvm/device_remove_lvm boolean true
d-i partman-md/device_remove_md boolean true
d-i partman-lvm/confirm boolean true
d-i partman-lvm/confirm_nooverwrite boolean true
d-i partman-auto/choose_recipe select atomic
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true
d-i partman-md/confirm boolean true
d-i partman-partitioning/confirm_write_new_label boolean true
d-i partman/choose_partition select finish
d-i partman/confirm boolean true
d-i partman/confirm_nooverwrite boolean true
d-i base-installer/kernel/image string linux-image-amd64
d-i apt-setup/non-free boolean true
d-i apt-setup/contrib boolean true
tasksel tasksel/first multiselect ssh-server
d-i pkgsel/include string ncdu, avahi-daemon, open-vm-tools-desktop, curl
d-i pkgsel/upgrade select none
d-i grub-installer/only_debian boolean true
d-i grub-installer/bootdev string /dev/sda
d-i grub-installer/bootdev string default
d-i finish-install/reboot_in_progress note
d-i preseed/late_command string echo "%sudo ALL=(ALL:ALL) NOPASSWD:ALL"> /target/etc/sudoers.d/sudogroup; \
chmod 0440 /target/etc/sudoers.d/sudogroup; \
in-target bash -c "/usr/bin/systemctl enable avahi-daemon systemd-networkd"; \
echo "utuVM" > /target/etc/hostname; \
sed -i ’s/debian/utuVM/g’ /target/etc/hosts; \
echo "W01hdGNoXQpOYW1lPSoKW05ldHdvcmtdCkRIQ1A9eWVz" > /target/home/utu/.netconf; \
in-target bash -c ’base64 -d /home/utu/.netconf > /etc/systemd/network/20-wired.network’; \
in-target bash -c ’base64 -d /home/utu/.netconf > /etc/systemd/network/25-wireless.network’

17

C Ansible playbooks

C.1 prepare-vm.yaml

- hosts: all

tasks:

- name: install gpg

become: yes

apt:

name: gnupg

state: present

- name: add key

apt_key:

keyserver: hkp://keyserver.ubuntu.com:80

id: 8756C4F765C9AC3CB6B85D62379CE192D401AB61

become: true

- name: add repo

become: yes

become_method: sudo

apt_repository:

repo: deb http://deb.seadrive.org bionic main

state: present

- name: Install xfce4 and slim window manager

become: yes

become_method: sudo

apt:

update_cache: yes

state: present

name: "{{ item }}"

loop:

- xfce4

- slim

- xfce4-terminal

- seadrive-gui

- seadrive-daemon

- zenity

- yad

- curl

- jq

- name: remove unnessassary software

apt:

name: "{{ item }}"

state: absent

purge: yes

loop:

- xscreensaver

- gnome-terminal

- ubuntu-advantage-tools

- wireless-regdb

- tango-icon-theme

- friendly-recovery

- geoip-database

- iptables

- installation-report

- install-info

- laptop-detect

- linux-firmware

- light-locker

become: true

- name: Remove useless packages from the cache

apt:

autoclean: yes

become: true

- name: create directory for xfce config files

file:

path: /home/utu/.config/xfce4/xfconf/xfce-perchannel-xml

state: directory

- name: create desktop directory

file:

path: /home/utu/Desktop

state: directory

- name: create documents directory

file:

path: /home/utu/Documents

state: directory

- name: copy background image

become: yes

copy:

src: "../../xfce_config/taustakuva.jpg"

dest: "/usr/share/backgrounds/xfce/xfce-teal.jpg"

- name: copy config files to vm

copy:

src: "../../xfce_config/{{ item }}.xml"

dest: "/home/utu/.config/xfce4/xfconf/xfce-perchannel-xml/{{ item }}.xml"

loop:

- keyboards

- thunar

- xfce4-desktop

- xfce4-keyboard-shortcuts

- xfce4-panel

- xfce4-session

- xfwm4

- name: Remove dependencies that are no longer required

apt:

autoremove: yes

become: true

- name: create link to Documents directory

file:

src: /home/utu/Documents

dest: /home/utu/Desktop/Documents

state: link

- name: copy git-manuals

copy:

src: "../../git-opas/pieni_git_opas_fi.pdf"

dest: "/home/utu/Documents"

- name: reconfigure login manager

command: dpkg-reconfigure slim

become: true

...

18

C.2 playbook-install-git.yaml

- hosts: all

tasks:
- name: Install git and other system tools

become: true
become_method: sudo
apt:

name: "{{ item }}"
state: present
update_cache: true

loop:
- git
- gitk
- meld
- evince
- doxygen
- geany
- htop
- iftop
- iotop
- gdmap

- name: Install chromium debian
become: true
become_method: sudo
apt:

name: chromium
state: present

when: ansible_distribution == ’Debian’

- name: Install chromium ubuntu
become: true
become_method: sudo
apt:

name: chromium-browser
state: present

when: ansible_distribution == ’Ubuntu’

- name: create folder for chromium bookmarks
file:

path: /home/utu/.config/chromium/Default
state: directory

- name: copy bookmarks to guest system
copy:

src: ../../scripts/bookmarks
dest: /home/utu/.config/chromium/Default/Bookmarks

- name: copy gitconfig base to system
copy:

src: ../../scripts/git.config
dest: /home/utu/.gitconfig

- name: Remove useless packages from the cache
apt:

autoclean: yes
become: true

- name: Remove dependencies that are no longer required
apt:

autoremove: yes
become: true

...

C.3 playbook-clean-system.yaml

- hosts: all

tasks:
- name: clear files no longer needed

become: yes
become_method: sudo
file:

path: "{{ item }}"
state: absent

loop:
- /root/.bash_history
- /home/utu/.bash_history
- /home/utu/.ansible/
- /var/cache/apt/
- /var/lib/apt/lists/

- name: set autologin for user utu
blockinfile:

path: /etc/slim.conf
block: |

default_user utu
auto_login yes

become: true
- name: copy firstrun script to profile.d

copy:
src: ../../scripts/startupScript.sh
dest: /etc/profile.d/startupScript.sh
owner: root
group: root
mode: u=rw,g=r,o=r

become: true

- name: Install debian language script
become: true
become_method: sudo
copy:

src: ../../scripts/debianlanguage.sh
dest: /etc/profile.d/xlanguage.sh
owner: root
group: root
mode: u=rw,g=r,o=r

when: ansible_distribution == ’Debian’

- name: Install ubuntu language script
become: true
become_method: sudo
copy:

src: ../../scripts/ubuntulanguage.sh
dest: /etc/profile.d/xlanguage.sh
owner: root
group: root
mode: u=rw,g=r,o=r

when: ansible_distribution == ’Ubuntu’

- name: reboot for changes to take effect
become: true
reboot:

...

19

